Home | Looking for something? Sign In | New here? Sign Up | Log out

SUBSCRIBE HERE

Enter your email address:

Delivered by FeedBurner

Subscribe to ALL COMPETITIVE GURU by Email

Advertising

Netspend.comFacebook Login

2009/09/18

POWER DEVELOPMENT IN INDIA

2009/09/18
0 comments

Save And Share : Share On Facebook ! Add To Del.icio.us ! Google Bookmark ! Send An Email ! Get These Share Buttons ! POWER DEVELOPMENT IN INDIA Comments RSS ! Share On Digg ! Share On Reddit ! Share On LinkedIn ! Post To Blogger ! Share On StumbleUpon ! Share On Friend Feed ! Share On MySpace ! Share On Yahoo Buzz ! POWER DEVELOPMENT IN INDIATweet This ! (Click On It For Url Shortening) Share On Google Buzz !

Save And Share : Share On Facebook ! Add To Del.icio.us ! Google Bookmark ! Send An Email ! Get These Share Buttons ! POWER DEVELOPMENT IN INDIA Comments RSS ! Share On Digg ! Share On Reddit ! Share On LinkedIn ! Post To Blogger ! Share On StumbleUpon ! Share On Friend Feed ! Share On MySpace ! Share On Yahoo Buzz ! POWER DEVELOPMENT IN INDIATweet This ! (Click On It For Url Shortening) Share On Google Buzz !

The history of power development in India dates back to 1897 when a 200 kW hydro-station was first commissioned at Darjeeling. The first steam station was set up in Calcutta in 1899. By the end of 1920, the total capacity was 130 mW, comprising. Hydro 74 mW, thermal 50 mW and diesel 6 mW. In 1940, the total capacity goes to 1208 mW. There was very slow development during 1935-1945 due to Second World War. The total generation capacity was 1710 mW by the end of 1951. The development really started only after 1951 with the launching of the first five-year plan. During the First Plan, construction of a number of Major River Valley Projects like Bhakra- Nangal, Damodar Valley, Hira Kund and Chambal Valley was taken up. These projects resulted in the stepping up of power generation. At the end of the First Plan, generation capacity stood at 34.2 lakh kW. Emphasis in Second Plan (1956-61) was on development of basic and heavy industries and related need to step up power generation. Installed capacity at the end of Second Plan reached 57 lakh kw. comprising 3800 mW thermal and 1900 MW hydel. During the Third Plan period (1961-66), emphasis was on extending power supply to rural areas. A significant development in this phase was emergence of Inter-state Grid System. The country was divided into Five Regions to promote power development on a Regional Basis. A Regional Electricity Board was established in each region to promote integrated operation of constituent power system. Three Annual Plans that followed Third Plan aimed at consolidating programmes initiated during the Third Plan. Fourth Plan envisaged need for central participation in expansion of power generation programmes at strategic locations to supplement activities in the State Sector. Progress during the period covering Third Plan, three Annual Plans and Fourth Plan was substantial with installed capacity rising to 313.07 lakh kW compression; 113.86 lakh kW from Hydro-electric Projects, 192.81 lakh kW from Thermal Power Projects and balance of 6.4 lakh kW from Nuclear Projects at the end of the Fifth Plan. During the Sixth Plan, total capacity addition of 196.66 lakh kW comprising Hydro 47.68 lakh kW, Thermal 142.08 lakh kW and Nuclear 6.90 lakh kW was planned. Achievement, however, has been 142.26 lakh kW (28.73 lakh kW Hydro, 108.98 lakh kW Thermal and 4.55 lakh kW Nuclear) 72.3 per cent of the target. The Seventh Plan power programme envisaged aggregate generating capacity of 22,245 mW in utilities. This comprised 15,999 mW Thermal, 5,541 mW Hydro and 705 mW Nuclear of the anticipated 22,245 mW additional capacity. Central Sector Programme envisaged capacity addition of 9,320 mW (7,950 mW Thermal, 665 mW Hydro and 705 mW Nuclear) during the Plan Period. During the Seventh Plan, 21401.48 mW has been added comprising 17104.1 mW Thermal 3,827.38 mW Hydro and 470 mW Nuclear. Year wise commissioning of Hydro, Thermal and Nuclear Capacity added during 1985-86 to 1989-90 is given in. The Working Group on Power set up particularly the Planning Commission in the context of formulation of power programme for the Eighth Plan has recommended a capacity addition programme of 38,369 mW for the Eighth Plan period, out of which it is expected that the Central Sector Projects would add a capacity of 17,402 mW. The programme for the first year of the Eighth Plan (1990-91) envisages generation of additional capacity of 4,371.5 mW comprising 1,022 mW Hydro, 3,114.5 mW Thermal and 235 mW Nuclear. The subject ‘Power’ appears in the Concurrent List of the Constitution and as such responsibility of its development lies both with Central and state governments. At the Centre, Department of Power under the Ministry of Energy is responsible for development of Electric Energy. The department is concerned with policy formulation, perspective planning, procuring of projects for investment decisions, monitoring of projects, training and manpower development, administration and enactment of Legislation in regard to power generation, transmission and distribution. The depart-ment is also responsible for administration of the Electricity (Supply) Act, 1948 and the Indian Electricity Act, 191() and undertakes all amendments thereto. The Electricity (Supply) Act, 1948, forms basis of administrative structure of electricity industry. The Act provides for setting up of a Central Electricity Authority (CEA) with responsibility, inter-alia, to develop a National Power Policy and coordinate activities of various agencies and State Electricity Boards. The act was amended in 1976 to enlarge scope and function of CEA and enable of creation of companies for generation of electricity. The Central Electricity Authority advises Department of Power on technical, financial and economic matters. Construction and operation of generation and transmission projects in the Central Sector are entrusted to Central Power Corporations, namely, National Thermal Power Corpora-tion (NTPC), National Hydro-Electric Power Corporation (NHPC) and North-Eastern Electric Power Corporation (NEEPCU) under administrative control of the Department of Power. The Damodar Valley Corporation (DVC} constituted under the DVC Act, 1948 and the Bhitkra Beas, Management Board (BBMB) constituted under the Punjab Reorganization. Act, 1966, is also under administrative control of the Department of Power. In addition, the department administers Beas Construction Board (BCB) and National Projects Construction Corporation (NPCC), which are construction agencies and training and research organisations, Central Power Research Institute (CPRI) and Power Engineers Training Society (PETS). Programmes of rural electrification are within the purview of Rural Electrification Corporation (REC) which is a financing agency. ‘‘There are two joint venture Power Corporations under the administrative control of the Department of Power, namely, Nathpa jhakri Power Corporation and Tehri Hydro Development Corporation which are responsible for the execution of the Nathpa Jhakri Power Project and Projects of the Tehri Hydro Power Complex respectively. In addition to this, Energy Manage-ment Centre, an autonomous body, was established in collaboration with the European Economic Community, which is responsible for training, research, and information exchange between energy professionals. It is also responsible for conservation of energy programmes/activities in the Department of Power. Significant progress has been made in the expansion of transmission and distribution facilities in the Country. Total length of transmission lines of 66 kV and above increased from 10,000 ckt (circuit) km in December 1950 to 2.02 lakh ckt Km in March, 1990. Highest transmission voltage in the Country at present is 400 kV and above 19800 ckt km of 400 kV lines had been constructed up to March, 1990 and about 18000 ckt km of these are in actual operation. Prior to the Fourth Plan, Transmission Systems in the Country were developed more or less as state systems, as generating stations were built primarily in the State Sector. When State Transmission Systems had developed to a reasonable extent in the Third Plan, potentiality of inter-connected operation of individual state systems with other neighboring systems within the region (northern, western, southern, eastern and north-eastern) was thought of. Fairly well inter-connected systems at voltage of 220 kV with progressive overlay of 400 kV are presently available in all regions of the Country except North-eastern Region. With creation of Two Generation Corporations, namely National Thermal Power Corporation and National Hydro-Electric Power Corporation in 1975, the Centre had started playing an increasingly larger role in the development of grid systems. The 400 kV transmission systems being constructed by these organisa-tions as part of their generation projects, along with 400 kV inter-state and inter-regional transmission lines would form part of the National Power Grid. National Power Grid will promote integrated operation and transfer of power from one system to another with ultimate objective of ensuring optimum utilisation of resources in the Country. India now has well integrated Regional Power Systems and exchange of power is taking place regularly between a large numbers of state systems, which greatly facilitates better utilisation of existing capacity.

Follow me on Twitter

Follow me on Twitter


read more

GATE - ELECTRONICS & TELECOMMUNICATION

0 comments

Save And Share : Share On Facebook ! Add To Del.icio.us ! Google Bookmark ! Send An Email ! Get These Share Buttons ! GATE - ELECTRONICS & TELECOMMUNICATION Comments RSS ! Share On Digg ! Share On Reddit ! Share On LinkedIn ! Post To Blogger ! Share On StumbleUpon ! Share On Friend Feed ! Share On MySpace ! Share On Yahoo Buzz ! GATE - ELECTRONICS & TELECOMMUNICATIONTweet This ! (Click On It For Url Shortening) Share On Google Buzz !

Save And Share : Share On Facebook ! Add To Del.icio.us ! Google Bookmark ! Send An Email ! Get These Share Buttons ! GATE - ELECTRONICS & TELECOMMUNICATION Comments RSS ! Share On Digg ! Share On Reddit ! Share On LinkedIn ! Post To Blogger ! Share On StumbleUpon ! Share On Friend Feed ! Share On MySpace ! Share On Yahoo Buzz ! GATE - ELECTRONICS & TELECOMMUNICATIONTweet This ! (Click On It For Url Shortening) Share On Google Buzz !

Engineering Mathematics Linear Algebra: Matrix Algebra, Systems of linear equations, Eigen values and eigen vectors. Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series. Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green's theorems. Differential equations: First order equation (linear and nonlinear), Higher order linear differential equations with constant coefficients, Method of variation of parameters, Cauchy's and Euler's equations, Initial and boundary value problems, Partial Differential Equations and variable separable method. Complex variables: Analytic functions, Cauchy's integral theorem and integral formula, Taylor's and Laurent' series, Residue theorem, solution integrals. Probability and Statistics: Sampling theorems, Conditional probability, Mean, median, mode and standard deviation, Random variables, Discrete and continuous distributions, Poisson, Normal and Binomial distribution, Correlation and regression analysis. Numerical Methods: Solutions of non-linear algebraic equations, single and multi-step methods for differential equations. Transform Theory: Fourier transform, Laplace transform, Z-transform. Electronics and Communication Engineering Networks: Network graphs: matrices associated with graphs; incidence, fundamental cut set and fundamental circuit matrices. Solution methods: nodal and mesh analysis. Network theorems: superposition, Thevenin and Norton's maximum power transfer, Wye-Delta transformation. Steady state sinusoidal analysis using phasors. Linear constant coefficient differential equations; time domain analysis of simple RLC circuits, Solution of network equations using Laplace transform: frequency domain analysis of RLC circuits. 2-port network parameters: driving point and transfer functions. State equations for networks. Electronic Devices: Energy bands in silicon, intrinsic and extrinsic silicon. Carrier transport in silicon: diffusion current, drift current, mobility, and resistivity. Generation and recombination of carriers. p-n junction diode, Zener diode, tunnel diode, BJT, JFET, MOS capacitor, MOSFET, LED, p-I-n and avalanche photo diode, Basics of LASERs. Device technology: integrated circuits fabrication process, oxidation, diffusion, ion implantation, photolithography, n-tub, p-tub and twin-tub CMOS process. Analog Circuits: Small Signal Equivalent circuits of diodes, BJTs, MOSFETs and analog CMOS. Simple diode circuits, clipping, clamping, rectifier. Biasing and bias stability of transistor and FET amplifiers. Amplifiers: single-and multi-stage, differential and operational, feedback, and power. Frequency response of amplifiers. Simple op-amp circuits. Filters. Sinusoidal oscillators; criterion for oscillation; single-transistor and op-amp configurations. Function generators and wave-shaping circuits, 555 Timers. Power supplies. Digital circuits: Boolean algebra, minimization of Boolean functions; logic gates; digital IC families (DTL, TTL, ECL, MOS, CMOS). Combinatorial circuits: arithmetic circuits, code converters, multiplexers, decoders, PROMs and PLAs. Sequential circuits: latches and flip-flops, counters and shift-registers. Sample and hold circuits, ADCs, DACs. Semiconductor memories. Microprocessor(8085): architecture, programming, memory and I/O interfacing. Signals and Systems: Definitions and properties of Laplace transform, continuous-time and discrete-time Fourier series, continuous-time and discrete-time Fourier Transform, DFT and FFT, z-transform. Sampling theorem. Linear Time-Invariant (LTI) Systems: definitions and properties; causality, stability, impulse response, convolution, poles and zeros, parallel and cascade structure, frequency response, group delay, phase delay. Signal transmission through LTI systems. Control Systems: Basic control system components; block diagrammatic description, reduction of block diagrams. Open loop and closed loop (feedback) systems and stability analysis of these systems. Signal flow graphs and their use in determining transfer functions of systems; transient and steady state analysis of LTI control systems and frequency response. Tools and techniques for LTI control system analysis: root loci, Routh-Hurwitz criterion, Bode and Nyquist plots. Control system compensators: elements of lead and lag compensation, elements of Proportional-Integral-Derivative (PID) control. State variable representation and solution of state equation of LTI control systems. Communications: Random signals and noise: probability, random variables, probability density function, autocorrelation, power spectral density. Analog communication systems: amplitude and angle modulation and demodulation systems, spectral analysis of these operations, superheterodyne receivers; elements of hardware, realizations of analog communication systems; signal-to-noise ratio (SNR) calculations for amplitude modulation (AM) and frequency modulation (FM) for low noise conditions. Fundamentals of information theory and channel capacity theorem. Digital communication systems: pulse code modulation (PCM), differential pulse code modulation (DPCM), digital modulation schemes: amplitude, phase and frequency shift keying schemes (ASK, PSK, FSK), matched filter receivers, bandwidth consideration and probability of error calculations for these schemes. Basics of TDMA, FDMA and CDMA and GSM. Electromagnetics: Elements of vector calculus: divergence and curl; Gauss' and Stokes' theorems, Maxwell's equations: differential and integral forms. Wave equation, Poynting vector. Plane waves: propagation through various media; reflection and refraction; phase and group velocity; skin depth. Transmission lines: characteristic impedance; impedance transformation; Smith chart; impedance matching; S parameters, pulse excitation. Waveguides: modes in rectangular waveguides; boundary conditions; cut-off frequencies; dispersion relations. Basics of propagation in dielectric waveguide and optical fibers. Basics of Antennas: Dipole antennas; radiation pattern; antenna gain.

Follow me on Twitter

Follow me on Twitter


read more

GATE - ELECTRICAL ENGG.

0 comments

Save And Share : Share On Facebook ! Add To Del.icio.us ! Google Bookmark ! Send An Email ! Get These Share Buttons ! GATE - ELECTRICAL ENGG. Comments RSS ! Share On Digg ! Share On Reddit ! Share On LinkedIn ! Post To Blogger ! Share On StumbleUpon ! Share On Friend Feed ! Share On MySpace ! Share On Yahoo Buzz ! GATE - ELECTRICAL ENGG.Tweet This ! (Click On It For Url Shortening) Share On Google Buzz !

Save And Share : Share On Facebook ! Add To Del.icio.us ! Google Bookmark ! Send An Email ! Get These Share Buttons ! GATE - ELECTRICAL ENGG. Comments RSS ! Share On Digg ! Share On Reddit ! Share On LinkedIn ! Post To Blogger ! Share On StumbleUpon ! Share On Friend Feed ! Share On MySpace ! Share On Yahoo Buzz ! GATE - ELECTRICAL ENGG.Tweet This ! (Click On It For Url Shortening) Share On Google Buzz !

Engineering Mathematics Linear Algebra: Matrix Algebra, Systems of linear equations, Eigen values and eigen vectors. Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series. Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green's theorems. Differential equations: First order equation (linear and nonlinear), Higher order linear differential equations with constant coefficients, Method of variation of parameters, Cauchy's and Euler's equations, Initial and boundary value problems, Partial Differential Equations and variable separable method. Complex variables: Analytic functions, Cauchy's integral theorem and integral formula, Taylor's and Laurent' series, Residue theorem, solution integrals. Probability and Statistics: Sampling theorems, Conditional probability, Mean, median, mode and standard deviation, Random variables, Discrete and continuous distributions, Poisson, Normal and Binomial distribution, Correlation and regression analysis. Numerical Methods: Solutions of non-linear algebraic equations, single and multi-step methods for differential equations. Transform Theory: Fourier transform, Laplace transform, Z-transform. Electrical Engineering Electric Circuits and Fields: Network graph, KCL, KVL, node and mesh analysis, transient response of dc and ac networks; sinusoidal steady-state analysis, resonance, basic filter concepts; ideal current and voltage sources, Thevenin's, Norton's and Superposition and Maximum Power Transfer theorems, two-port networks, three phase circuits; Gauss Theorem, electric field and potential due to point, line, plane and spherical charge distributions; Ampere's and Biot-Savart's laws; inductance; dielectrics; capacitance. Signals and Systems: Representation of continuous and discrete-time signals; shifting and scaling operations; linear, time-invariant and causal systems; Fourier series representation of continuous periodic signals; sampling theorem; Fourier, Laplace and Z transforms. Electrical Machines: Single phase transformer - equivalent circuit, phasor diagram, tests, regulation and efficiency; three phase transformers - connections, parallel operation; auto-transformer; energy conversion principles; DC machines - types, windings, generator characteristics, armature reaction and commutation, starting and speed control of motors; three phase induction motors - principles, types, performance characteristics, starting and speed control; single phase induction motors; synchronous machines - performance, regulation and parallel operation of generators, motor starting, characteristics and applications; servo and stepper motors. Power Systems: Basic power generation concepts; transmission line models and performance; cable performance, insulation; corona and radio interference; distribution systems; per-unit quantities; bus impedance and admittance matrices; load flow; voltage control; power factor correction; economic operation; symmetrical components; fault analysis; principles of over-current, differential and distance protection; solid state relays and digital protection; circuit breakers; system stability concepts, swing curves and equal area criterion; HVDC transmission and FACTS concepts. Control Systems: Principles of feedback; transfer function; block diagrams; steady-state errors; Routh and Niquist techniques; Bode plots; root loci; lag, lead and lead-lag compensation; state space model; state transition matrix, controllability and observability. Electrical and Electronic Measurements: Bridges and potentiometers; PMMC, moving iron, dynamometer and induction type instruments; measurement of voltage, current, power, energy and power factor; instrument transformers; digital voltmeters and multimeters; phase, time and frequency measurement; Q-meters; oscilloscopes; potentiometric recorders; error analysis. Analog and Digital Electronics: Characteristics of diodes, BJT, FET; amplifiers - biasing, equivalent circuit and frequency response; oscillators and feedback amplifiers; operational amplifiers - characteristics and applications; simple active filters; VCOs and timers; combinational and sequential logic circuits; multiplexer; Schmitt trigger; multi-vibrators; sample and hold circuits; A/D and D/A converters; 8-bit microprocessor basics, architecture, programming and interfacing. Power Electronics and Drives: Semiconductor power diodes, transistors, thyristors, triacs, GTOs, MOSFETs and IGBTs - static characteristics and principles of operation; triggering circuits; phase control rectifiers; bridge converters - fully controlled and half controlled; principles of choppers and inverters; basis concepts of adjustable speed dc and ac drives.

Follow me on Twitter

Follow me on Twitter


read more

Ads By CbproAds
 

Geo Visitors Map

Enter your email address:

Delivered by FeedBurner

Subscribe to ALL COMPETITIVE GURU by Email